Impact of Sleep Deprivation Stress in Promoting Sensitization of the Trigeminal System

Functions of Sleep

- Fatigue reversal
 - allows individual to recover and reenergize
- Biochemical refreshment
 - promotes synaptic efficiency, protein synthesis, neurogenesis, metabolic restoration
- Immune function
 - reset or protection

- Memory
 - memory consolidation, facilitates encoding new information
- Psychologic well-being
 - lack of sleep: risk of mood alteration to depression

Basic Sleep Cycle

STAGE I

- Light sleep
- Eye and muscle activity slow

STAGE 2

stops

stops

slow

Eve movement

Muscle activity

Brain waves

Sleep spindles

(small bursts

of brain activ-

ity) begin

- Brain activity decreases by 50%
- Sleeper may experience sudden muscle contractions

THE SLEEP CYCLE

There are five phases of sleep that form a sleep cycle. Most people experience five complete cycles each night, each cycle lasting from 90 to 110 minutes.

STAGE 4

- Deep sleep
 Brain produces
 only delta
- •No eve or
- muscle movement
- Sleeper may be disoriented if
- •No eye or mus- awakened
- cle movement
 Difficult to wake the sleeper

STAGE 3

starts

waves

Deep sleep

Brain begins to

produce very

slow delta

sleep • Muscles of the chin, produces neck, torso and

REM

- limbs are paralyzed
- Sleeper begins to dream

Heart and breath-

Eve movement is

ing rates increase

quick and irregular

Blood pressure rises

Breathing becomes

As the night progresses, the length of REM stages increases and the length of time spent in deep sleep decreases. By morning, nearly all sleep is stage one, two or REM.

Typical cycle: 7 1/2 - 9 hrs

Sleep Deprivation: Major Epidemic

- Significant impact on public health
- 20%-60% hospitalized patients
- 20% general population
- Incidence and prevalence increasing in youth and young adults
- Triggers:
 - mood alteration
 - sociability dysfunction
 - complaints of bodily pain

Sleep Quality/Quantity and Pain – Vicious Cycle

- Bad night's sleep enhances pain but pain disrupts sleep creating vicious cycle
- Sleep loss increases hyperalgesia and spontaneous pain
- Pain perception dependent on activity of ascending (stimulatory) and descending (inhibitory) pathways
- Potential mechanisms contributing to sleep loss-induced pain enhancement :
 - opioid, monoaminergic, HPA, melatonin, and immune (inflammatory) systems
- Sleep loss increased levels of proinflammatory cytokines (IL-1β, IL-6, TNF-α) – potent pain inducing and facilitating factors

TMD (Migraine) - Sleep - Pain

- TMD patients exhibit enhanced responses to painful stimuli
- Genetic polymorphorphisms predict development of new onset TMD
- Peripheral and central contributions early but as progresses, changes in central pain processing (central sensitivity syndromes)
- Evidence that sleep disturbance factor that directly contributes to central sensitization and pain amplification
- 77% of orofacial pain patients report reduced sleep quality and quantity of sleep
- 75% ICSD self-reported sleep bruxism; 17% met RDC PSG criteria for active
- 43% diagnosed with 2 or more sleep disturbances
 - primary insomnia (36%), obstructive sleep apnea (28.4%)

Smith et al., SLEEP, 2009

REM Sleep Deprivation Suppresses Phosphatase Levels in Trigeminal Neurons and Glia

Promotion of Peripheral and Central Sensitization

TMD Pathology - Increased Expression of Pro-Inflammatory/Nociceptive Signaling Molecules and Increased Neuron-Satellite Glial Cell Communication

Normal Neuronal or Glial Cell at Homeostasis

Neuronal or Glial Cell During Painful Phase

Kinases

гноэрна

Increase Expression of Proteins and Molecules Involved in Inflammation and Nociception

Decrease Expression of Proteins and Molecules Involved in Inflammation and Nociception

Normal Neuronal or Glial Cell Restorative Phase

Kinases

Increase Expression of Proteins and Molecules Involved in Inflammation and Nociception

Phosphatases

Decrease Expression of Proteins and Molecules Involved in Inflammation and Nociception REM Sleep Deprivation After TMJ Inflammation Leads to Chronic Increased Levels of Nociceptive Proteins in Trigeminal Neurons and Glia

RSD = REM Sleep Deprivation; CFA = complete Freund's adjuvant; heat killed bacteria - inflammatory

REM Sleep Deprivation After TMJ Inflammation Leads to Prolonged Decreased Levels of Phosphatases in Trigeminal Neurons and Glia

RSD = REM Sleep Deprivation

MKP-1 and MKP-3 Anti-inflammatory proteins

REM Sleep Deprivation After TMJ Inflammation Leads to Chronic Increased Levels of Inflammatory Proteins In STN

p38 - inflammatory protein; OX-42 – biomarker of activated microglia

REM Sleep Deprivation After TMJ Inflammation Leads to Chronic Decreased Levels of MKP-1 In STN

MKP-1 – role in decreasing inflammation

REM Sleep Deprivation Can Promote Prolonged Peripheral and Central Sensitization

Risk Factors and Trigeminal Sensitization

 Test the hypothesis that sensitization of the trigeminal system prior to activation of TRPA1 receptors by a pungent odor is sufficient to cause sustained hyperalgesia and allodynia.

REM Sleep Deprivation Promotes Peripheral Sensitization of Trigeminal Nociceptors

2. Sensitization of Spinal Neurons and Glia

Trapezius Muscles (Inflammation)

3. Sensitization of TG Peripheral Nociceptors 1. Sensitization of DRG Peripheral Nociceptors

Activation of Trigeminal Nerves Via TRPA1: Headache Tree Extract

Umbellularia californica

Pungent Odors: Trigger for migraine

Umbellulone Nassini (Geppetti), Brain 2012

REM Sleep Deprivation and Pungent Odor Increase Nocifensive Behaviors in V1 and V3

■ Naive ■ CBL OII ■ REM SD ■ REM SD + CBL Oil

REM Sleep Deprivation Can Promote Chronic Peripheral and Central Sensitization

Sleep Deprivation: Consequences

Unpredictable and Chronic Stress Promote Hypervigilant State

Perception of Real or Presumed Physical and Social Threats Leads to Activation of HPA Axis

Front. Psychiatry, 07 August 2013

Migraine Risk Factors and Triggers

Chronic Nicotine Promotes Expression of Proteins Implicated in Development of Peripheral and Central Sensitization of Trigeminal Neurons

Nicotine

- Alkaloid found in the tobacco plant (*Nicotiana tabacum*)
- Most common forms of tobacco use include chewing tobacco and cigarette smoking
- Acts on nicotinic acetylcholine receptors (nACH) localized in peripherial and central nervous system
- Strong correlation with chronic nicotine use and higher levels of pain and sensitivity

TMD/Migraine and Trigeminal Sensitization

(weeks - months)

prime-state

Chronic Nicotine Promotes Expression of Proteins Implicated in Development of Peripheral and Central Sensitization of Trigeminal Neurons Systemic Nicotine Chronic Central Peripheral Sensitization. Sensitization menindes trigeminal ganlia spinal trigeminal Subthreshold nucleous Cellular Changes of stimuli **Trigeminal Nociceptors** (1nM Cap) and Glia Cells

Trigeminal Nociceptor Activation

Spinal Trigeminal Neuron and Glia Activation

Epigenetic Inheritance - Influences Multiple Generations

Changes in gene expression – not caused by mutations (changes in DNA sequence)

As if three generations - exposed to the same environmental conditions (diet, toxins, hormones, etc.)

Epigenetic changes - transient by nature

Epigenetic change triggered by environmental conditions may be reversed when environmental conditions change again

Smoking Stress Malnutrition Hypertension Under nutrition Diabetes

Over nutrition Obesity

Andrew P. Feinberg Nature **447**, 433-440 (24 May 2007)

Mechanism of Multigenerational Exposure and Transgenerational Inheritance

Social Environment Affects Epigenetic Program

Early Life Stress – Major Risk Factor for Developing Depressive Disorders

Early life stress, such as childhood abuse, neglect and loss, is a well established major risk factor for developing depressive disorders later in life

Table 2 Stress-induced transgenerational inheritance of pathologies

Stress exposure	Pathology	Reference
Maternal separation and stress	Social anxiety and recognition and stress resilience	Franklin <i>et al</i> . 2011 [43]
Traumatic paternal stress (odorant)	Behavioral and neural metabolic responses	Dias et al. 2014 [44]
Gestational restraint and forced swimming	Preterm birth and prenatal growth and behavior	Yao <i>et al.</i> 2014 [1]

Early-life Stress Impacts Developing Hippocampus and Primes Seizure Occurrence

<u>DOHaD:</u>

Developmental Origins of Health and Disease

Front. Mol. Neurosci., 10 February 2014

Minimizing Early Stress – Long-term Benefits

- Reducing prenatal and postnatal stress may help reduce the cost of treating adult diseases
- Ideally, intervention and prevention should be achieved before pregnancy begins
- Psychosocial interventions in early life can affect brain development and thereby benefit children at risk
- Other perinatal adversities such as perinatal infection, nutritional disorders, and toxin exposures must be cautiously avoided and treated

Secondary Traumatic Stress Promotes Sensitization of Trigeminal Neurons

Model for Studying Secondary Traumatic Stress

Hawkins, Moore, Miley, Durham. Brain Research 2018 May 15;1687:162-172

Secondary Stress

Prenatal or Postnatal Secondary Stress Causes Prolonged Peripheral Sensitization in TG – P-ERK

Control Naïve Animals

Prenatal or Postnatal Secondary Stress Causes Prolonged Peripheral Sensitization in TG – P-p38

Control Naïve Animals

Prenatal or Postnatal Secondary Stress Causes Prolonged Central Sensitization in STN – P-ERK

Control Naïve Animals

Prenatal or Postnatal Secondary Stress Causes Prolonged Central Sensitization in STN – P-p38

Control Naïve Animals

Prenatal or Postnatal Secondary Stress Causes Prolonged Central Sensitization in STN – CGRP

Control Naïve Animals

Prenatal or Postnatal Secondary Stress Causes Prolonged Central Sensitization in STN – GFAP (Astrocytes)

Control Naïve Animals

Model for Studying Secondary Traumatic Stress

Hawkins, Moore, Miley, Durham. Brain Research 2018 May 15;1687:162-172

Early Life Stress Increased Basal Mechanical Sensitivity in Female Offspring

Increased Nocifensive Response to Pungent Odor in Male and Female Sensitized Animals

Gut-Brain Axis – Integration of Multiple Systems

Healthy Gut = Healthy Brain

Trigeminal Neurons Express SCFA Receptors

Inhibit --Sensitization Activation

Stress Differentially Affects Microbial Populations in Cecum in Males and Females

Early Life Stress Causes Major Shift in Male Microbiota

Early Life Stress Causes Major Shift in Female Microbiota

