Epigenetics Role in Pain Chronification

PAIN IN AMERICA

More than 30% of Americans are living with some form of chronic or severe pain.

MORE PEOPLE LIVE WITH CHRONIC PAIN THAN CANCER, HEART DISEASE, AND DIABETES, COMBINED.

Sources: National Institutes of Health (NIH), Centers for Disease Control and Prevention (CDC), Institute of Medicine

Evolution of Migraine in Adults

- Fortunately most people have episodic migraine
 - Most self-manage migraine
 - Gender distribution changes to approximately 6:1 (F:M) for adults in clinical trials
 - Attack frequency is higher
 - Attack disability is greater
- Chronic migraine affects 2 4% of the adult population

Episodic Migraineur

- Attacks are discrete and self limited
- Headache more localized
- Quality of pain is concise and discriminative
- Associated symptoms
 - Nausea and vomiting
 - Photo- and phonophobia
- May not become a headache patient

Chronic Migraine

- Headaches are frequent
- Headache diffuse and variable
- Quality is mixed
- Associated symptoms
 - Nausea and vomiting
 - Photo- and phonophobia
 - Psychological
 - Myofascial
- Commonly become headache patients

Transforming Migraine

Transforming Migraine

Transforming Migraine

Stage 1: Infrequent Episodic Migraine

Lipton RB, et al. *Managing migraine: A healthcare professional's guide to collaborative migraine care.* Hamilton, Ontario: Baxter Publishing Inc; 2008:25.

Stage 2: Frequent Episodic Migraine

Lipton RB, et al. *Managing migraine: A healthcare professional's guide to collaborative migraine care.* Hamilton, Ontario: Baxter Publishing Inc; 2008:26.

Stage 2: Migraine

- 3 or less migraine attacks per month or 8 HA days
- ► Full recovery between migraine episodes
- MIDAS generally 10 or less

MIDAS, The Migraine Disability Assessment

Lipton RB, et al. *Managing migraine: A healthcare professional's guide to collaborative migraine care.* Hamilton, Ontario: Baxter Publishing Inc; 2008:26.

Stage 3: Transforming Migraine

Lipton RB, et al. *Managing migraine: A healthcare professional's guide to collaborative migraine care.* Hamilton, Ontario: Baxter Publishing Inc; 2008:26.

Stage 3: Transforming Migraine

- Attacks less distinct: 8-14 days of HA per month
- Return to baseline function does not always occur between migraine attacks
- Evidence of physiological and/or psychological dysfunction often present
- ▶ MIDAS 11-20

Lipton RB, et al. *Managing migraine: A healthcare professional's guide to collaborative migraine care.* Hamilton, Ontario: Baxter Publishing Inc; 2008:26.

Stage 4: Chronic Migraine

Lipton RB, et al. *Managing migraine: A healthcare professional's guide to collaborative migraine care.* Hamilton, Ontario: Baxter Publishing Inc; 2008:27.

Stage 4: Chronic Migraine

- Greater than 15 days of HA/month for greater than 3 months (HA>4h)
- Little or no return to normal baseline function
 - ▶ Low-grade HA or feeling as if on the edge of next migraine
- Comorbidity frequent
- MIDAS 21-270

Buse DC, et al. *J Neurol Neurosurg Psychiatry*. 2010;81:428-432. Cady R, et al. *Curr Pain Headache Rep*. 2005;9:47-52. Blumenfeld AM, et al. *Cephalalgia*. 2011;31:301-315.

Stage 4: Chronic Migraine

CM is not just "more" episodic migraine

- Greater severity of headache and associated symptoms
- Greater impact and healthcare cost
- Delayed diagnosis and management may result in end organ damage and progression of disease

▶ It can be reversed!

Buse DC, et al. *J Neurol Neurosurg Psychiatry*. 2010;81:428-432. Welch KMA, et al. *Headache*. 2001;41:629-637.

Peripheral Sensitization and TMD

Peripheral sensitization Response threshold of meningeal TGVS nociceptors Response amplitude

 Early: within ~ 20 min of the onset of pain

• Can last for up to 2 hours

Throbbing pain

 Worsened by movement Drives central sensitization

Central Sensitization and TMD

Central sensitization Neuronal hyperexcitability in the TNC Possibly due to: CGRP Ca²⁺ glutamate (NMDA)

Later: within ~60 min of the onset of pain
Can last up to 10 hours Allodynia
Prolongation of the attack

 Drives sensitization of higher-order neurons

Development of Primed State of Nociceptors – Chronic Sensitization

Primed State

 Normal basal nociceptor thresholds
 Lower concentration of inflammatory mediators (PGs, TNF, IL, NO) elicit enhanced and prolonged hyperalgesia Adapted from Hucho and Levine, Neuron 55, 2007

Nociceptor Sensitization

Increased sensitivity to inflammatory stimuli Hyperalgesia in primed state is markedly prolonged Involves: cAMP, PKA, PKC, MAP kinases, sex hormones

Changes in ion channel and receptor expression

· Can last up to several weeks

 Prolongation of the attack May underlie chronification of pain

The Perfect Storm - Increasing Number of Risk Factors Promotes Peripheral (Poor sleep, and Central Sensitization

Triggers –

neurons

stimuli

Cause activation

of nociceptive

Often sensory

Muscle Tension

oor

Diet

sickchild

Stress

Weather

Risk factors –

Lower activation threshold of nociceptive neurons Sensitization of Trigeminal Nociceptive Neurons in Response to Prolonged Neck Muscle Pain and REM Sleep Deprivation:

Implications for Migraine and TMD Pathology (Creation of the Perfect Storm)

Risk Factors and Trigeminal Sensitization

 Test the hypothesis that sensitization of the trigeminal system prior to activation of TRPA1 receptors by a pungent odor is sufficient to cause prolonged hyperalgesia and allodynia.

Neck Muscle Inflammation and REM Sleep Deprivation Promote Sensitization of Trigeminal Nociceptors

Combination of Sleep Deprivation and Inflammation of Trapezius Increase Nocifensive Responses Over the Masseter (V3)

D = day; M = muscle; SD = REM sleep deprivation; rec = recovery from sleep deprivation

Combination of Sleep Deprivation, Inflammation of Trapezius, and Pungent Odor Results in Severe Pain Behavioral Response and Prolonged Sensitization in the Masseter Region (V3)

Pungent odor = extract of California Bay Leaves ("Headache Tree") -10 minute exposure

Perfect Storm – Development of Chronic Sensitized State (V1)

Perfect Storm – Development of Chronic Sensitized State (V3)

Naïve (n = 12) PS (n = 12)

Contributors to Development of Chronic Pain

Adaptive vs Maladaptive Physiology

Epigenetics and Development of Chronic Pain - Evidence from Monozygotic Twin Studies

Methylation patterns similar in identical twins early in development but become altered later – evidence of environmental factors influencing gene expression and affecting health

Chronic Pain: Evidence for Involvement of Epigenetics

Key Processes Thought to Underlie Chronic Pain States

(A) Changes in brain function: a network of cortical and subcortical areas is involved in processing nociceptive signals and the sensation of pain. In chronic pain patients, many of these display profound changes in fMRI bold signal, interconnectivity, and top-down modulation of ascending spinal signals.

(B) Abnormal amplification of pain signals in DRG and spinal cord neurons: sensory neurons display hyperexcitability as a result of altered neurotrophic support and extensive changes in the expression of relevant genes, most notably ion channels and nociceptors. Second-order cells exhibit central sensitization as a result of several processes including immune and glial cell recruitment in the CNS.

Neuron 73, February 9, 2012 @2012

Key Processes Thought to Underlie Chronic Pain States

(C) Peripheral inflammation and sensitization of nociceptors: tissue damage activates and recruits immune cells (e.g., mast cells, macrophages and neutrophils). These cells will release or stimulate the production of a variety of cytokines (e.g., IL-6, IL-1b, TNFa) and proinflammatory mediators (e.g., NGF and prostaglandins). This will activate or modulate the action of receptors on the sensory nerve terminals (e.g., the TrkA, cytokine, and prostaglandin receptors [EP/IP] are activated and Trp channels can be modulated). This process will result in sensitization of the nociceptive neuron.

Summary of Epigenetic Changes Associated With Chronic Pain States

Table 1. Summary of Epigenetic Writers, Readers, and Erasers

	Writers		Readers	Erasers
DNA methylation	DNMT1 DNMT3A DNMT3B		MeCP2 MBD1-4	not clear - only putative targets so far: - MBD2 (Bhattacharya et al., 1999) - TET enzymes leading to iterative oxydation resulting in eventual removal of methyl-cytosine (Ito et al., 2011, He et al., 2011)
Histone acetylation	Histone acetyltransferases (HATs) GCN5/PCAF GNAT related (e.g., HAT1, TFIIIC) Myst family (e.g., TIP60, HBO1) CBP/p300 family TAF250 family SRC family (e.g., SRC1, TIF2)	 > H3K9/K14/K18 > H4K5/K12 > H4, H3K14 > H3K14/K18 H4K5/K8 H2A, H2B > H3K20 > H3K27 	Bromodomain proteins e.g., most HATs BET family (Brd2, Brd4, Bdf1) Brg-1	Histone deacetylases (HDACs) class I (HDAC1, HDAC2, HDAC3, HDAC8) class IIa (HDAC4, HDAC5, HDAC7, HDAC9) class IIb (HDAC6, HDAC10) sirtuins (SIRT1 - SIRT7) class IV (HDC11)

Summary of Epigenetic Changes Associated With Chronic Pain States

Histone methylation	Lysine methyltransferases (KMTs) KMT1A - KMT1F (e.g., G9a, GLP) MLL family (e.g., MLL1, hSET1A) KMT3A - KMT3C (e.g., NSD1) DOT1 KMT5A, KMT5B (e.g., SUV420H1) KMT6/ EZH2 KMT7/ SET7&9 KMT8/ RIZ1	> H3K9 > H3K4 > H3K36 > H3K79 > H3K20 > H3K27 > H3K4 > H3K9	Royal family - chromo-domain proteins, e.g., HP-1 like, polycomb like, CHD like - tudor-domain proteins, e.g., SMN PHD proteins e.g., CBD, ING2, DNMT3L, PHF6	Lysine demethylases (KDMs) LSD1/ KDM1 JHDM/Jumonji (e.g., JHDM1A/B, JHDM2A/B, JHDM3A-D, JARID1A-D, UTX)
Histone phosphorylation	Serine/Threonine Kinases e.g., MST, AMPK Haspin, VRK, Aurora B PKCα, PKCβ, MSK1/2, JNK	> H2B > H3 > H3	14-3-3 proteins seven isoforms: theta, gamma, zeta, eta, epsilon, beta, mu	Protein Phosphatases e.g., Serine/ Threonine protein phosphatases (PPP2CA, PPP2CB, PPP1CC) Protein phosphatase 1D Eye-absent homologues (EYA1-3)

Large families of proteins have been identified that add the various epigenetic marks (writers), remove them (erasers), and bind them to exert downstream effects (readers). This table does not provide an exhaustive list, and many issues are still under debate such as the existence of active DNA demethylation (Bhattacharya et al., 1999; Ito et al., 2011; He et al., 2011). In the case of histone writer molecules, there tends to be quite a clear preference for particular lysine residues, the identity of which is also indicated here (e.g., H3K9 indicates preferential action at lysine residue 9 of histone 3). Current evidence suggests that the same preference does not exist for histone erasers. It is important to bear in mind that many of these molecules do not exclusively act on histones or even in the nucleus, but that they are also capable of modifying cytoplasmic proteins (e.g. tubulin; for review, see Sadoul et al., 2011). Hence drugs targeting their function, such as HDAC inhibitors, can also affect nonepigenetic processes.

One Possible Mechanism by Which Epigenetic Processes Promote Chronic Pain

Neuron 73, February 9, 2012 @2012

Summary of Epigenetic Changes During Various Chronic Pain **Conditions and Effects of Pharmacological Treatment**

rain

				14	10 - V	1	
Neuro	pathic Pain	a second	T	Barren and	The second se	-	-1/
	Mentrajan .	Location	LAP BARRY	Decision of	-manageredy	ramenue	D
	WINDOTED	- N	ALCONT.LP-	HORET	175	at 1001	1
394		85	the .	Ther	TAS:275 - +New Andreas	Dark of M.	
112				Noti	H0AC1	2013	
5%		10	\$0.F4	Net	po Wik - #likety, #GEF-L	Hohearth at	
			GLAST		BLAST	at, 2013	(B) (0)
201	The second se	2003	WOR BAROOM	ther	NAVINE (#1 THE, MAR, \$2	SHOP IF AL.	12 March
÷	Article: Hitle:	8	4.8ad	Ther	to burtumia = I Then March	Zhate \	1000
	p308/CBP at Add'and OCXU	0.1	0082	Mech	Bohr, COX2, H245ac, AMPSac, pROSCOP at Behr and COX2	3014	
66	CAX methyletism	85	\$M(27	Ther	2.5-aza = + Thet, Mech, DNA	Harge at.	SC
-		-		Net	methylation, MeCP1	2011	
sour.	 FORMER DOLL/ INF 	sca	e Little z	10H	p.w. • • Iner, Hanolacian	Kipuchi at	\sim
PIN.	+-Skies and Hitkland of	858	+COLT.	Ther	P.M - The 02.2, COLI	Rpull el	0.00
-	COLT INFCOLS	797	4000	lines and	to Third of Discourts	#. 2013	
124	Contract of Apple 1	0.00	Havt & TRPVT, TRPME CGRP		HANNER I RIVIE MATE	x. 2013	
боти	tic Pain	1000		-			
Mode	Mex Enzyme	Location	Correct	Beptises.	Plantancing	Performance	ALC: NOT THE OWNER
DFA	WIDGer at Del?	MIN	+GA058	Ther	HE TSASAGAE NOU - WTHE APORTAL HE GADS	Zhang et.el. 2017	120 44 1 5
CFA	♦+DetBit(Tible), @-dates II HEACs	80	AS:50 V	3w	E sizes \$HCACs = Thes, + IORNIDe:	Barint al., 2010	Mr Cla
CFA .	#2NA methylation	50	April 213	Madt	RS-ass + @Mach, Carrilla,	Panat at,	11111

Neuro	pathic Pain		euron	Xe K	<u> </u>		Brain
Model	Mark/Enzyme	Location	Expression	Behavior	Pharmacology	Reference	(MP)
SNL	↓ miR-103	SC	↑Cav1.2- LTC	Mech	AAV-miR-103 = Mech, Cav1.2- LTC	Favereaux et al., 2013	
SNL		SC		Ther Mech	It MS-275 = ♥Mech, ↑H3KBac, HDAC1	Denk et al., 2013	
SNL		SC	♦GLT-1, GLAST	Mech	po VPA = ♥Mech, ↑GLT-1, GLAST	Yoahizumi et al., 2013	
SNL/ CCI	♦ miR-7a	DRG	♠β2 subunit of Nav	Ther Mech	AAV-miR-7a = Ther, Mech, β2 subunit	Sakai et al., 2013	
CCI	♦H3K9ac, H4K5ac, p300/C8P at Bdnf and COX2	SC	♠Bdnf, COX2	Ther Mech	Ip curcumin =	Zhu et al., 2014	
CCI	♠DNA methylation	SC	↑MeCP2	Ther Mech	It 5-aza = Ther, Mech, DNA methylation, MeCP2	Wang et al., 2011	sc
PSNL	H3K9ac at CXCL2 and CXCR2	SCN	↑CXCL2 CXCR2	Ther	ip AA = Ther, H3K9ac at CXCL2 and CXCR2	Kiguchi et el., 2012	\sim /
PSNL	✦H3K9ac and H3K4me3 at CCL2 and CCL3	SCN	↑CCL2, CCL3	Ther	ip AA = Ther CCL2, CCL3	Kiguchi et al., 2013	
PSNL	♦H3/H4ac at Nav1.8	DRG	CGRP	Hypoesth	Ipi SAHA = ♥ Hypoesth, ↑H3H4ac at Nev1.8, Nev1.8, TRPV1, TRPM8	Matsushita ef al., 2013	

Casey O. Ligon et al. J Pharmacol Exp Ther 2016;357:84-93

Summary of Epigenetic Changes During Various Chronic Pain Conditions and Effects of Pharmacological Treatment

MS @HighTops

Model	Mark/Enzyme	Location	Expression	Behavior	Pharmacology	Reference
CFA	♦H3K9ac at Gad2	NRM	♦ GAD66	Ther	Inf. TSA/SAHA to NRM = ↓Ther, ↑H3K9ac at Gad2, GAD65	Zhang et al., 2011
CFA	♦H3K9K18ac, ↑class II HDACs	SC		Ther	it class II HDACis ≈ Ther,	Bai et al., 2010
CFA	◆DNA methylation	SC	♦miR-219, ♦CamKily	Mech	it 5-aza = Mech, CamKliy, miR-219	Pan et al., 2014

Visce	ral Pain					
Model	Mark/Enzyme	Location	Expression	Behavior	Pharmacology	Reference
WAS				VMR	icv TSA = VMR	Tran et al., 2013
CORT	♦H3K9ac at GR	CeA	♦GR, ♦CRF	VMR Mech	Inf. TSA/SAHA to CeA = VVMR, Mech, CRF H3K9ac at GR, GR	Tran et al., 2014
E2		SC	₩Grm2	VMR	it SAHA = ↓VMR, mGluR2 ↑H3K9ac to Grm2	Cao et al., 2014
MS	♦H4K12ac	SC		VMR	ip SAHA = ♥VMR, ↑H4K12ac	Moloney et al., 2015

Casey O. Ligon et al. J Pharmacol Exp Ther 2016;357:84-93

Summary of HDAC and DNMT Inhibitors

HDAC inhibitors	Hydroxamates	SAHA (vorinostat)		Pan inhibitor
		PXD101 (belinostat)	(E)-N-hydroxy-3-[3- (phenylsulfamoyl)phenyl]prop- 2-enamide	Pan inhibitor
		LBH589 (panobinostat)	(E)-N-hydroxy-3-[4-[[2-(2- methyl-1H-indol-3- yl)ethylamino]methyl]phenyl]pr op-2-enamide	Classes I and II
		ITF2357 (givinostat)	[6- (diethylaminomethyl)naphthale n-2-yl]methyl- <i>N</i> -[4- (hydroxycarbamoyl)phenyl]carb amate;hydrate;hydrochloride	Pan inhibitor
		4SC-201 (resminostat)	(<i>E</i>)-3-[1-[4- [(dimethylamino)methyl]phenyl] sulfonylpyrrol-3-yl]- <i>N</i> - hydroxyprop-2-enamide	Pan inhibitor
		PCI-24781 (abexinostat)	3-[(dimethylamino)methyl]- <i>N</i> -[2- [4- (hydroxycarbamoyl)phenoxy]eth yl]-1-benzofuran-2-carboxamide	Classes I and II

Summary of HDAC and DNMT Inhibitors

Cyclic peptides	Depsipeptide/FK228	(1 <i>S</i> ,4 <i>S</i> ,7 <i>Z</i> ,10 <i>S</i> ,16 <i>E</i> ,21 <i>R</i>)-7- ethylidene-4,21-di(propan-2-yl)- 2-oxa-12,13-dithia-5,8,20,23- tetrazabicyclo[8.7.6]tricos-16- ene-3,6,9,19,22-pentone	Class I	
	Benzamides	MS-275 (entinostat)	N-[[4-[[(2- aminophenyl)amino]carbonyl]ph enyl]methyl]-3-pyridinylmethyl ester, carbamic acid	Class I
		MGCD0103 (mocetinostat)	N-(2-aminophenyl)-4-[[(4- pyridin-3-ylpyrimidin-2- yl)amino]methyl]benzamide	Class I
		M344	4-(dimethylamino)- <i>N</i> -[7- (hydroxyamino)-7- oxoheptyl]benzamide	Class I
	Aliphatic fatty acids	Valproate		Classes I and IIa
		Butyrate		Classes I and IIa
	Unknown mechanism	CI-994	4-acetamido-N-(2- aminophenyl)benzamide	HDAC1, HDAC2
		BML-210	N'-(2-aminophenyl)-N- phenyloctanediamide	HDAC 1–5 and 7
		NVP-LAQ824	(E)-N-hydroxy-3-[4-[[2- hydroxyethyl-[2-(1H-indol-3- yl)ethyl]amino]methyl]phenyl]pr op-2-enamide	Unknown

Summary of HDAC and DNMT Inhibitors

DNMT inhibitors	5-Azacitidine	Pan inhibitor
	5-aza-2'- deoxycytidine	Pan inhibitor
	1-β-D- arabinofuranosyl -5-azacytosine	Pan inhibitor
	Dihydro-5- azacytidine	Pan inhibitor
	MG98	DNMT1

The current epigenetic modifying compounds are nonspecific and nonselective, acting both centrally and peripherally as well as at many epigenetic sites. The changes in the epigenome during the development of persistent pain are also extraordinarily complex and dynamic. Moreover, the resulting epigenetic mark largely depends on the injury or insult sustained as well as the past experiences of each individual. With this in mind, the current epigenetic drugs in development and in use for the treatment of cancer (Copeland et al., 2009; New et al., 2012) that may potentially be investigated in the context of pain are highly nonspecific HDAC inhibitors and DNMT inhibitors, which have numerous side effects and seem unsuitable for long-term treatment of chronic pain.